Finite Limit
Definitions
The limit of f , as x approaches x 0 , is L
x → x 0 lim f ( x ) = L
((ε, δ)-definition of limit. Cauchy)
∀ ε > 0 , ∃ δ > 0 , ∀ x ∈ R , ( 0 < ∣ x − x 0 ∣ < δ ⟹ ∣ f ( x ) − L ∣ < ε )
(Sequential Criterion for a Limit of a Function. Heine)
∀ ( x n ) n = 1 ∞ , ( ( n → ∞ lim ( x n ) = x 0 ) ∧ ( ∀ n ∈ N , x n = x 0 ) ) ⟹ n → ∞ lim f ( x n ) = L
(left & right -hand limit) (4.48)
x → x 0 − lim f ( x ) = x → x 0 + lim f ( x ) = L
(4.40) h → 0 lim f ( x 0 + h ) = L
Theorems
(4.31) Uniqueness of the limit of function
( f ( x ) n → x 0 ⟶ L ∧ f ( x ) n → x 0 ⟶ M ) ⟹ L = M
(4.33) Limit of Linear Function
Let f a linear function then for each x 0 ∈ R , we have x → x 0 lim f ( x ) = f ( x 0 )
∀ ε > 0 , ∃ δ > 0 : ∀ x ∈ R , ( 0 < ∣ x − x 0 ∣ < δ ⟹ ∣ f ( x ) − L ∣ < K ε ) ⟹ x → x 0 lim f ( x ) = L (given K is a constant positive real number)
given x → x 0 lim f ( x ) ∈ R
(4.34, Local Property ) ∃ δ : ∀ x ∈ ( − δ , x 0 ) ∪ ( x 0 , δ ) , f ( x ) = g ( x ) ⟹ x → x 0 lim f ( x ) = x → x 0 lim g ( x )
f is defined on ( − δ 0 , x 0 ) ∪ ( x 0 , δ 0 )
(4.36) 0 = x → x 0 lim f ( x ) ∈ R ⟹ ∃ δ : ∀ x ∈ ( − δ , x 0 ) ∪ ( x 0 , δ ) , f ( x ) = 0
(4.43) Squeeze theorem for functions
( f ( x ) ≤ g ( x ) ≤ h ( x ) ) ∧ ( x → x 0 lim f ( x ) = x → x 0 lim h ( x ) = L ) ⟹ x → x 0 lim g ( x ) = L
given the limits of f and g is defined (finite or infinite)
(4.41) ∃ ε > 0 : ∀ x ∈ N ε ∗ ( x 0 ) , f ( x ) ≤ g ( x ) ⟹ x → x 0 lim f ( x ) ≤ x → x 0 lim g ( x )
(4.42) ∃ ε > 0 : ∀ x ∈ N ε ∗ ( x 0 ) , f ( x ) < g ( x ) ⟸ x → x 0 lim f ( x ) < x → x 0 lim g ( x )
Arithmetic
Assuming f , g are defined on N ε ∗ ( x 0 ) , and their limits are exist
Limit Laws Sum / Difference x → x 0 lim ( f ( x ) ± g ( x )) = x → x 0 lim f ( x ) ± x → x 0 lim g ( x ) Product x → x 0 lim ( f ( x ) ⋅ g ( x )) = x → x 0 lim f ( x ) ⋅ x → x 0 lim g ( x ) x → x 0 lim ( f ( x ) ⋅ c ) = x → x 0 lim f ( x ) ⋅ c x → x 0 lim ( f ( x ) ) n = ( x → x 0 lim f ( x ) ) n Quotient x → x 0 lim ( f / g ) ( x ) = x → x 0 lim f ( x ) / x → x 0 lim g ( x ) where x → x 0 lim g ( x ) = 0 Composite Function (4.39) x → x 0 lim f ( x ) = t → t 0 lim f ( g ( t )) t → t 0 lim g ( t ) = x 0 is defined and (f is continuous at x 0 or g ( t ) = x 0 for some deleted neighborhood of t 0 )
(q4.62) x → 0 lim f ( x ) = L ⟹ x → 0 lim f ( x 2 ) = L
(q4.63) x → 0 lim f ( x ) = x → 0 lim f ( x k ) (where k = 0 and the limits exists)
x → ∞ lim f ( x ) = 0 ∧ ∃ M : ∣ g ( x ) ∣ < M ⟹ x → ∞ lim f ( x ) g ( x ) = 0 (analogously 2.22)
x → x 0 lim f ( x ) = 0 ⟺ x → x 0 lim ∣ f ( x ) ∣ = 0 (analogously q2.20a)
for x → x 0 lim f ( x ) g ( x ) you can use in these methods:
Heine’s Sequential Criterion with t6.15
Using in the identity f ( x ) g ( x ) = e g ( x ) l n ( f ( x )) (where 0 < f ( x ) g ( x ) ) and using in Composite Function (5.14)
One-Sided Limits
L is the right-hand limit of f at x 0
x → x 0 + lim f ( x ) = L
( ∀ ε > 0 ) ( ∃ δ > 0 ) ( ∀ x ∈ R ) ( x ∈ ( x 0 , x 0 + δ ) ⟹ f ( x ) ∈ ( L − ε , L + ε ))
Sequential Criterion (Heine )
∀ ( x n ) n = 1 ∞ ( n → ∞ lim ( x n ) = x 0 ) ∧ ( ∀ n ∈ N , x n > x 0 ) ⟹ n → ∞ lim f ( x n ) = L
L is the left-hand limit of f at x 0
x → x 0 − lim f ( x ) = L
( ∀ ε > 0 ) ( ∃ δ > 0 ) ( ∀ x ∈ R ) ( x ∈ ( x 0 − δ , x 0 ) ⟹ f ( x ) ∈ ( L − ε , L + ε ))
Sequential Criterion (Heine )
∀ ( x n ) n = 1 ∞ ( n → ∞ lim ( x n ) = x 0 ) ∧ ( ∀ n ∈ N , x n < x 0 ) ⟹ n → ∞ lim f ( x n ) = L
Infinite limits
x → x 0 lim f ( x ) = ∞
( ∀ M ∈ R ) ( ∃ δ > 0 ) ( ∀ x ∈ R ) ( 0 < ∣ x − x 0 ∣ < δ ⟹ f ( x ) > M )
(Note: It’s sufficient to ensure for M > 0 .)
∀ ( x n ) n = 1 ∞ ( n → ∞ lim ( x n ) = x 0 ) ∧ ( ∀ n ∈ N , x n = x 0 ) ⟹ n → ∞ lim f ( x n ) = ∞
x → x 0 − lim f ( x ) = ∞ = x → x 0 + lim f ( x )
x → x 0 lim f ( x ) = − ∞ (or one-sided Limits) defined the same, just replace f ( x ) > m with f ( x ) < m
One-Sided Limits
∞ is the right-hand limit of f at x 0
x → x 0 + lim f ( x ) = ∞
( ∀ M ∈ R ) ( ∃ δ > 0 ) ( ∀ x ∈ R ) ( x ∈ ( x 0 , x 0 + δ ) ⟹ f ( x ) > M )
∀ ( x n ) n = 1 ∞ ( n → ∞ lim ( x n ) = x 0 ) ∧ ( ∀ n ∈ N , x n > x 0 ) ⟹ n → ∞ lim f ( x n ) = ∞
∞ is the left-hand limit of f at x 0
x → x 0 − lim f ( x ) = ∞
( ∀ M ∈ R ) ( ∃ δ > 0 ) ( ∀ x ∈ R ) ( x ∈ ( x 0 − δ , x 0 ) ⟹ f ( x ) > M )
∀ ( x n ) n = 1 ∞ ( n → ∞ lim ( x n ) = x 0 ) ∧ ( ∀ n ∈ N , x n < x 0 ) ⟹ n → ∞ lim f ( x n ) = ∞
− ∞ is the right-hand limit of f at x 0
x → x 0 + lim f ( x ) = − ∞
( ∀ M ∈ R ) ( ∃ δ > 0 ) ( ∀ x ∈ R ) ( x 0 < x < x 0 + δ ) ⟹ f ( x ) < M )
∀ ( x n ) n = 1 ∞ ( n → ∞ lim ( x n ) = x 0 ) ∧ ( ∀ n ∈ N , x n > x 0 ) ⟹ n → ∞ lim f ( x n ) = − ∞
− ∞ is the left-hand limit of f at x 0
x → x 0 − lim f ( x ) = − ∞
( ∀ M ∈ R ) ( ∃ δ > 0 ) ( ∀ x ∈ R ) ( x 0 − δ < x < x 0 ) ⟹ f ( x ) < M )
∀ ( x n ) n = 1 ∞ ( n → ∞ lim ( x n ) = x 0 ) ∧ ( ∀ n ∈ N , x n < x 0 ) ⟹ n → ∞ lim f ( x n ) = − ∞
Arithmetic of Infinite limits
∞ + ∞ = ∞
∞ + r = ∞
∞ ⋅ ∞ = ∞
∞ ⋅ r > 0 = ∞
1/∞ = 0
1/ 0 + = ∞
x → x 0 lim ( f ( x )) = ∞ ⟺ x → x 0 lim ( − f ( x )) = − ∞
Squeeze Theorem for infinite limit
f ( x ) → ∞ ∧ ∃ M : ∀ x > M , g ( x ) ≥ f ( x ) ⟹ g ( x ) → ∞ (analogously to 2.45)
Limits at Infinity
L is the limit of f
at ∞
x → ∞ lim f ( x ) = L
∀ ε > 0 , ∃ M : ∀ x ∈ R , ( x > M ⟹ ∣ f ( x ) − L ∣ < ε )
∀ ( x n ) n = 1 ∞ n → ∞ lim x n = ∞ ⟹ n → ∞ lim f ( x n ) = L
at − ∞
x → − ∞ lim f ( x ) = L
( ∀ ε > 0 ) ( ∃ M ) ( ∀ x ∈ R ) ( x < M ⟹ ∣ f ( x ) − L ∣ < ε )
∀ ( x n ) n = 1 ∞ n → ∞ lim x n = − ∞ ⟹ n → ∞ lim f ( x n ) = L
∞ is the limit of f
at ∞
x → ∞ lim f ( x ) = ∞
( ∀ M 1 ∈ R ) ( ∃ M 2 ∈ R ) ( ∀ x ∈ R ) ( x > M 2 ⟹ f ( x ) > M 1 )
∀ ( x n ) n = 1 ∞ n → ∞ lim x n = ∞ ⟹ n → ∞ lim f ( x n ) = ∞
at − ∞ todo
− ∞ is the limit of f
Limit at Infinity of Rational Function g ( x ) f ( x ) = b m x m + ⋯ + b 0 a n x n + ⋯ + a 0
deg ( f ) < deg ( g ) ⟹ x → ∞ lim x m b m x m + ... + x m b 0 x m a n x n + ... + x m a 0 = b m + ... + 0 0 + ... + 0 = b m 0 = 0
deg ( f ) = deg ( g ) ⟹ x → ∞ lim x n b n x n + ... + x n b 0 x n a n x n + ... + x n a 0 = b n + ... + 0 a n + ... + 0 = b n a n
deg ( f ) > deg ( g ) ⟹ x → ∞ lim g ( x ) f ( x ) = ± ∞ (depending on the sign of b m a n )
L’Hôpital’s rule
x 0 ∈ I is finite, ∞ or − ∞
I is an open interval with x 0 (for two-sided limits) or an open interval with endpoint x 0 (for one-sided limits or limits at infinity if x 0 is infinite).
f and g are differentiable on I (except possibly at x 0 ),
g ′ ( x ) = 0 on I (except possibly at x 0 )
L = x → x 0 lim g ′ ( x ) f ′ ( x ) exists (finite, ∞ or − ∞ )
x → x 0 lim f ( x ) = x → x 0 lim g ( x ) = 0 or x → x 0 lim ∣ f ( x ) ∣ = x → x 0 lim ∣ g ( x ) ∣ = ∞
x → x 0 lim g ( x ) f ( x ) = x → x 0 lim g ′ ( x ) f ′ ( x )
0 0 , ∞ ∞ , 0 × ∞ , ∞ − ∞ , 0 0 , 1 ∞ , ∞ 0
Transformation to 0 0 Transformation to ∞ ∞ x → x 0 lim g ( x ) f ( x ) 0 0 - x → x 0 lim 1/ f ( x ) 1/ g ( x ) ∞ ∞ x → x 0 lim 1/ f ( x ) 1/ g ( x ) - x → x 0 lim f ( x ) − g ( x ) ∞ − ∞ ln x → x 0 lim e g ( x ) e f ( x ) x → x 0 lim f ( x ) ⋅ g ( x ) 0 ⋅ ∞ x → x 0 lim f ( x ) g ( x ) 1 ∞ exp x → x 0 lim 1/ g ( x ) ln f ( x ) exp x → x 0 lim 1/ ln f ( x ) g ( x ) 0 0 ∞ 0
Bounded Monotonic Function
(5.39) Bounded Monotonic Function - f is monotonic and defined on open interval ( a , b ) .
f is bounded on an open interval ( a , b ) , then both x → b − lim f ( x ) and x → a + lim f ( x ) exist (finite)
if f is increasing then
x → b − lim f ( x ) = sup f ( ( a , b ) )
x → a + lim f ( x ) = inf f ( ( a , b ) )
if f is decreasing then
x → b − lim f ( x ) = inf f ( ( a , b ) )
x → a + lim f ( x ) = sup f ( ( a , b ) )
if f is not bounded above
if f is increasing then
if f is decreasing then
if f is not bounded below
if f is increasing then
if f is decreasing then
Examples
Trigonometric functions
Exponential functions
lim c x
(6.9)
c x x → − ∞ x → x 0 x → ∞ 0 < c < 1 lim = ∞ lim = 0 c = 1 lim = 1 lim = 1 lim = 1 1 < c lim = 0 lim = c x 0 lim = ∞
lim c 1/ x
x → ∞ lim x c = x → ∞ lim c 1/ x = ⎩ ⎨ ⎧ 1 , 0 , does not exist , c > 0 c = 0 c < 0
Polynomials
x → c lim p ( x ) = p ( c )
p is n degree polynomial and a n = 0
x → ∞ lim p ( x ) = sign ( a n ) ⋅ ∞
x → − ∞ lim p ( x ) = { − sign ( a n ) ∞ − sign ( a n ) ∞ n even n odd
Logarithmic functions
b<1
x → ∞ lim log b x = − ∞
x → 0 + lim log b x = ∞
b>1
x → ∞ lim log b x = ∞
x → 0 + lim log b x = − ∞
Natural logarithms
x → x 0 lim ln x = ln x 0
x → ∞ lim ln x = ∞
x → 0 + lim ln x = − ∞
Other
(q4.85c) x → ∞ lim f ( x ) = x → 0 + lim f ( 1/ x ) (assuming f defined on ( M , ∞ ) )
(q4.85d) x → − ∞ lim f ( x ) = x → ∞ lim f ( − x ) (assuming f defined on ( − ∞ , M ) )
x → 0 + lim x x = 1
x − x 0 1
x → x 0 lim x − x 0 1 does not exist ⟸ x → x 0 + lim x − x 0 1 = ∞ ∧ x → x 0 − lim x − x 0 1 = − ∞
x → ∞ lim x − x 0 1 = 0
x 1 (Special Case x 0 = 0 )
x → 0 lim x 1 does not exist ⟸ x → 0 + lim x 1 = ∞ ∧ x → 0 − lim x 1 = − ∞
(q4.78) x → ∞ lim x 1 = 0
a x x r (assuming a > 1 , and r ∈ R )
(q6.17) x → ∞ lim x a ln x = 0 where a > 0
Asymptotes
The vertical line x = x 0 is a vertical asymptote of the function y = f ( x ) if
x → x 0 − lim f ( x ) = ± ∞ , or
x → x 0 + lim f ( x ) = ± ∞
The horizontal line y = c is a horizontal asymptote of the function y = f ( x ) if
x → − ∞ lim f ( x ) = c , or
x → + ∞ lim f ( x ) = c
The straight line y = m x + n is an oblique asymptote of the function y = f ( x ) if
x → − ∞ lim [ f ( x ) − ( m x + n ) ] = 0 , or
x → + ∞ lim [ f ( x ) − ( m x + n ) ] = 0