Second kind (Stirling partition number)
The Stirling numbers of the second kind, written or or with other notations, count the number of ways to partition a set of labelled objects into nonempty unlabelled subsets.
Equivalently, they count the number of different equivalence relations with precisely equivalence classes that can be defined on an element set.
k n
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | ||||||||||
1 | 0 | 1 | |||||||||
2 | 0 | 1 | 1 | ||||||||
3 | 0 | 1 | 3 | 1 | |||||||
4 | 0 | 1 | 7 | 6 | 1 | ||||||
5 | 0 | 1 | 15 | 25 | 10 | 1 | |||||
6 | 0 | 1 | 31 | 90 | 65 | 15 | 1 | ||||
7 | 0 | 1 | 63 | 301 | 350 | 140 | 21 | 1 | |||
8 | 0 | 1 | 127 | 966 | 1701 | 1050 | 266 | 28 | 1 | ||
9 | 0 | 1 | 255 | 3025 | 7770 | 6951 | 2646 | 462 | 36 | 1 | |
10 | 0 | 1 | 511 | 9330 | 34105 | 42525 | 22827 | 5880 | 750 | 45 | 1 |
Relation to Bell numbers
Since the Stirling number counts set partitions of an -element set into parts, the sum over all values of is the total number of partitions of a set with members.