z=a+bi Addition: (a+bi)+(c+di)=(a+c)+(b+d)i Subtraction: (a+bi)−(c+di)=(a−c)+(b−d)i Multiplication: (FOIL) (a+bi)(c+di)=(ac−bd)+(ad+bc)i (a+ib)2=a2−b2+i(2ab) Dividing: To simplify the quotient c+dia+bi multiply the numerator and the denominator by the complex conjugate of the denominator: c+dia+bi=(c+di)(c−di)(a+bi)(c−di)=c2+d2(ac+bd)+(bc−ad)i Inverse z1=z−1=∣z∣2zˉ Absolute value ∣z∣=a2+b2 ∣w∣∣z∣=∣wz∣ ∣w+z∣≤∣w∣+∣z∣ ∣z−1∣=∣z∣−1 where (z=0) Complex conjugate z=a−bi z+w=z+w z−w=z−w zw=z⋅w (wz)=wz if w=0 0≤zz=∣z∣2∈R ∣z∣=∣z∣ z+z=2a z−z=2ib z=z⟺z∈R Polar representation z=r(cosθ+isinθ) r=a2+b2 tanθ=ab or θ=arctan(ab) a=rcosθ b=rsinθ De Moivre’s formula - (cosx+isinx)n=cosnx+isinnx