logbx=y⟺ba=y
Logarithmic identities
Identity | Formula | |
---|
Log of the Base | logbb=1 | |
Log of Product | logb(xy)=logbx+logby | |
Log of Quotient | logb(x/y)=logbx−logby | |
Log of Power | logbxn=nlogbx | |
Log of One | logb1=0 | |
Log of the nth Root | logb(nx)=nlogbx | |
Change of Base | logbx=logcblogcx | |
Reciprocal of Logarithm | logbx=logxb1 | |
Power of a Log | xlogby=ylogbx | |
Logarithm of Reciprocal | logb(1/a)=−logba | |
| logbbx=x | (x∈R) |
| blogbx=x | |
| brlogbx=xr | |
also see limits of logarithmic functions
Binary logarithm
- log2n=lgn
- (lgn)lgn=nlglgn
- 2lglgn=lgn
- 2lgn=nlg2=n1=n
- 4lgn=nlg4=n2
- 4lgn=n2
- n1/lgn=2
- n1/lgn=2
- (n/2)lg(n/2)≤lg(n!)≤nlgn
- ⟹lg(n!)=Θ(nlgn) ^[see CRLS: t8.1, e8.1-2]
Natural Logarithm
- lnx:=loge(x)
- ln(1)=0
- ln(e)=1
- ln(ex)=x
- elnx=x
- erlnx=xr