∑an diverges, but ∑an(an+1) converges an=−1 ∑an converges, but ∑an(an+1) diverges an=n(−1)n ∑(an−an+1) converges, but ∑an diverges an=c for some constant c=0 ∑an and ∑bn converge, but ∑min(an,bn) diverges an=n(−1)n, bn=n(−1)n+1 n→∞limn∣an∣=c1 but ∑cnan converges. an=cnn21 ∫a∞f(x)dx converges, but ∫a∞f(x)g(x)dx diverges (g is a continuous and bounded on [a,∞)) f(x)=xsinx, g(x)=sinx